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Forced Periodic Oscillations 
and the Jones Polynomial 
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We show that forced periodic oscillations in a nonlinear damped oscillator can 
be classified by means of the Jones (knot) polynomial; this is done by associating 
to any periodic oscillation a braid. We also discuss the relation of this approach 
to (Lie-point) symmetry analysis of the associated differential equations. 

1. INTRODUCTION 

Knot theory (Reidemeister, 1948; Burde and Zieschang, 1986; Rolfsen, 
1976; Kauffman, 1983, 1987) is a classical subject in topology with--quite 
interestingly--physical motivations at the origins of its development at the 
end of the 19th century [the atomic theory of Kelvin; see also Atiyah (1990)]. 

In the 1920s, Alexander (1928) introduced his polynomial invariant 
as a powerful tool to study knots; actually, this approach was to remain 
unsurpassed until very recently when, in a burst of development, Jones and 
then others introduced a series of more powerful one- and two-variable 
invariant polynomials (Jones, 1985, 1986, 1987; Freyd et al., 1985; Kauff- 
man, 1988, 1989). Quite surprisingly, these new developments were related 
to apparently completely different subjects, and in particular physical ones. 

Once it was realized that there is a close relation between knot theory 
and modern theoretical physics (Yang and Ge, 1989; Kauffman, 1990, and 
to appear; Witten, 1989a,b; Lusanna, 1990; Frolich and King, 1989; Wadati 
et al., 1989; Jimbo, 1989), the developments followed at quite an impressive 
rhythm; here we just mention those concerned with statistical mechanics, 
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quantum field theory, and integrable systems (Birman and Williams, 
1983a,b). 

It is not surprising, at this point, to think that there is a relation among 
knots and dynamical systems. This was pioneered by Birman and Williams 
(1983a,b) in connection with the Lorenz equation; the subject was further 
developed by Holmes and Williams (1985), also in relation to chaotic 
dynamics in continuous dynamical systems (ODE) (Holmes, 1986, 1988). 
This kind of approach was also pursued in the study of discrete dynamical 
systems, i.e., maps (Mielke, 1990). 

The simple approach presented in this paper differs from the above ones 
in that we focus on regular dynamics, i.e., periodic orbits, rather than on 
chaotic ones (we also hope that an understanding of this situation can be of 
use in the study of the more complex cases). 

We think that knot-theoretic methods can be of use also in this simple 
situation, and will indeed show that for two-dimensional dynamical systems 
possessing a natural time scale--e.g., a periodically forced oscillator--there 
is a canonical way to associate to each periodic orbit a braid and therefore 
a knot (we assume the reader has some acquaintance with the basics of knot 
theory; for a simple introduction see, e.g., Reidemeister (1948), Burde and 
Zeischang (1986), Rolfsen (1976), Kauffman (1983, 1987, 1988, 1990), Jones 
(1985, 1986, 1987), and Freyd et al. (1985). 

We stress that in our approach knots are not associated to sets of orbits, 
but to single ones Iin this respect, it is more similar to that of Mielke (1990)] ; 
the presence of a time scale--period of the external forcing in this case, one- 
step in the discrete case, unperturbed period for nonlinear oscillators, etc.-- 
is necessary, as will be clear in the following, for canonically mapping a two- 
dimensional dynamical system defined in R2• R ~ (R  1 corresponds to the 
time coordinate) into the solid torus R2• S ~ by a "period map" on the t 
coordinate. 

Also, we will make contact with the approach developed in some recent 
papers (Cicogna and Gaeta, 1990; Gaeta, 1990, 1991; Cicogna, 1990), in 
which bifurcations were considered in the presence of symmetry under a 
general group of diffeomorphisms (i.e., not necessarily linear trans- 
formations), also called Lie-point symmetries (Olver, 1986; Bluman and 
Kumei, 1989; Ovsjannikov, 1982), and will relate the invariance of periodic 
solutions under such symmetries to topological invariance of the correspond- 
ing braids and therefore knots. 

It should be remarked that in the above-mentioned approach to bifurca- 
tions of dynamical systems, a Hopf bifurcation is also seen as a modification 
in the topology of the trajectory. This is the simplest example of a subject 
which we think is worth being explored, i.e., the relations among bifurcations 
and modifications in the topology of solutions. 
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2. FORCED PERIODIC OSCILLATIONS 

We want to study forced oscillations of  nonlinear oscillators, a topic of 
independent interest and central in several branches of physics. These are 
modeled, in the case of finite-dimensional systems, by equations of  the type 

ii = F(u, it) + gf(t)  (1) 

where f ( t ) ,  the forcing term, satisfies 

f ( t +  T)  =f ( t )  Vt (2) 

( f ( t ) )  =- f ( t )  dt = 0 (3) 

and u~R N, f :  R ~ R N. 
One is interested, in particular, in the periodic solutions of  (1), i.e., in 

solutions u = q~ (t) such that for some iP 

q~(t+ iF) = q~(t) 'Vt (4) 

In this case, the period T will be a multiple of  the forcing period T: 

T = N T ;  N =0,  1 , 2 , . . .  (5) 

Periodic solutions have topological properties, and the purpose of  this paper 
is to explore these, and show how they are related to braid invariants. 

Equation (1) is nonautonomous, so that we should study it in the 
enlarged phase space P = M x T, where M = { (u, it) } and T is the R 1 space 
corresponding to the time coordinate. We can also study the equivalent first- 
order system 

it=v, 6=F(u,  v)+ ef(t)  (6) 

In dynamical systems theory, one also considers the associated system 

it = v, 0 = F(u, v) + gf(t), i= 1 

called the suspension of the system (6). 
Now M =  {(u, v)} and it is natural to look at P as a fiber bundle with 

base T and fiber M = R 2u on which a connection A has been defined, to give 
the covariant derivative 

Dt = 0, + you + IF(u, v) + ef(t)]c~v (7) 

which is nothing else than the Lie derivative under the flow of (6). If  now 
we put Z =  (u, v; t )~R 2x+1, equation (6) is written as 

2 = D , Z  (8) 
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We have a natural (Poincar~) map 

Z.+~ = B "  Z,, (9) 

corresponding to 

f 
T 

Z ( T )  = Z(O) + 2( t )  at 
~ 0  

(10) 

The periodic orbits correspond to points Z0 such that 3N>__ 0: BNZo = Zo, N 
being the same as in (5). 

Actually, we can consider P instead of P, 

P = M x  SI:_P/Z (11) 

and the periodic orbits are characterized by the fact that they correspond to 
closed curves: i.e., while a generic orbit co= {u(t), t eR}  is co-~R 1, for a 
periodic orbit cop one has cop-S  1. So, we can see periodic orbits as being 
characterized by a topological property. 

Now, one would also like to distinguish among periodic orbits on the 
basis of  finer topological properties. We have seen before that the (minimal) 
period of  an orbit can be seen as a topological property (this corresponds to 
the winding number) ; therefore, we are actually asking if there are topological 
invariants which distinguish among isoperiodic orbits. Actually, for N---1 
one has a (highly) nontrivial topological invariant polynomial attached to 
any periodic orbit, by the simple construction which we present now. 

3. T O P O L O G I C A L  INVARIANCE OF PERIODIC OSCILLATIONS 

Let us see P as M •  [0, 1] with M o = M X  {0} and Mt = M x  {1} ident- 
ified. Then an N-periodic solution ~b (t) [i.e., such that c~ (t + Nt) = c~ (t)] will 
be characterized by N curves (sections of  the bundle P) joining M0 and M1; 
these are distinct if N T  is the minimal period of  ~b [i.e., c~ (t + KT)  ~ dp (t) for 
K < N ] .  Moreover, these curves 71(t) . . . . .  7~(t) hit M0 and M~ in sets of 
equivalent points, i.e., the sets 

r o  = { r , ( o )  . . . . .  r ~ ( o ) }  -~ Mo 

F, = {7,(1) . . . . .  7N(1)} ---> M, 
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Fig. 1. An  N-periodic solution can be seen as an N-braid. 

are the same set in fi, or under the identification of M0 and M1 (see 
Figure 1). 

Such a set of curves in M x  [0, 1] is known as an N-braid; it is trans- 
formed by the identification of M0 and M1 into a knot (see Figure 2), which 
is actually the periodic solution in the space P. The set of N-braids is a 
group, denoted BN. 

The problem of finding topological invariants of braids or knots (the 
two are equivalent) is an old one in topology. At present, our most powerful 
tool is the Jones polynomial, or variations of it. 

A first point to make clear is that "topological invariance" is the same 
for periodic solutions and for braids. 

Let us go back to equation (6). We can operate on P by Diff(M x R) 
and determine the vector field r/eDiff(M x R) which transforms solutions 

Fig. 2. 

( 

( 

Any braid can be transformed in a canonical way into a knot ;  this is shown here for 
the threefoiI knot. 
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into solutions; these form the symmetry algebra ~qA of equation (6) (Olver, 
1986; Bluman and Kumei, 1989; Ovsjannikov, 1982), which generates its 
symmetry group GA. Its determination is algorithmic and is explained, e.g., 
in Olver (1986), Bluman and Kumei (1989), and Ovsjannikov (1982). Actu- 
ally, this is too general: in fact, the problem has a natural time scale T, and 
we should not alter it. Another way of seeing the same point is that we can 
always put, once and for all, T= 1. This means that, if 

r I = ~(U, V, t)~3u+ Ilt(U, V, t )~+ v(u, v, t)~t (12) 

is a generic vector field in Diff(M • R), we should ask that 

r(u, v, 0)= r(u, v, T ) = 0  (13) 

or, equivalently, 

[r/]ep= 7/o~Diff(M) (14) 

Notice that ~7 must be the same on M0 and M1, since they are identified. 
There are also, in Diff(M • R), transformations which are not interest- 

ing: in particular, if we just operate by a rigid (global in the gauge-theoretic 
language) transformation, we surely obtain something equivalent, so we 
finally should consider on P only the diffeomorphisms in 

Diff(M x R)/Dif f (M) (15) 

and on P those in 

Diff(M • S l ) /Diff(M) (16) 

with moreover the condition (14): i.e., we consider 

f#o= { r/~Diff(M • S1)/Diff(M): r(u, v, 0)=0} (17) 

Notice that we could have taken any other to as reference point for S 1 = R l~ 
Z: i.e., we should ask r = 0  tout court, so that rl = c~(u, v, t)3u+ ~(u, v, t)Oo, 
with ~b~ + ~ not identically 0. This corresponds to asking for vertical vector 
fields in gauge-theoretic langauge, i.e., forfiber-preserving diffeomorphisms: 
each fiber of the bundle is invariant under such diffeomorphisms. 

This is exactly the class of admitted transformations of braids, so we 
have equivalent concepts of "topological invariance." 

4. CONCLUSIONS AND OUTLOOK 

Summarizing, our construction gives the following result: 

Given equation (1), its N-periodic solutions have a natural representa- 
tion in terms of N-braids; in this way a Jones polynomial can be associated 
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to any periodic solution, and two solutions with different Jones polynomials 
are necessarily topologically distinct; in particular, they cannot be trans- 
formed one into the other by the action of  Ga. 

At this point, some questions arise naturally: 
1. How can this result help in the actual computat ion of  periodic 

solutions? 
2. Given an equation (i.e., a nonlinear oscillator), is there any way to 

know which kind of bsBn  will be represented by its n-periodic solutions? 
3. I f  a solution corresponding to a braid beBn  undergoes a bifurcation 

(i.e., a period doubling), which kind of  braids b' will correspond to the 
bifurcating solutions? 

We hope to be able to progress toward an answer to these questions in 
a future publication. 
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